1,500 research outputs found

    Sensing behavior of acetone vapors on TiO2_2 nanostructures --- application of density functional theory

    Full text link
    The electronic properties of TiO2_2 nanostructure are explored using density functional theory. The adsorption properties of acetone on TiO2_2 nanostructure are studied in terms of adsorption energy, average energy gap variation and Mulliken charge transfer. The density of states spectrum and the band structure clearly reveals the adsorption of acetone on TiO2_2 nanostructures. The variation in the energy gap and changes in the density of charge are observed upon adsorption of acetone on n-type TiO2_2 base material. The results of DOS spectrum reveal that the transfer of electrons takes place between acetone vapor and TiO2_2 base material. The findings show that the adsorption property of acetone is more favorable on TiO2_2 nanostructure. Suitable adsorption sites of acetone on TiO2_2 nanostructure are identified at atomistic level. From the results, it is confirmed that TiO2_2 nanostructure can be efficiently utilized as a sensing element for the detection of acetone vapor in a mixed environment.Comment: 13 pages, 14 figures, 3 table

    SAFIUS - A secure and accountable filesystem over untrusted storage

    Get PDF
    We describe SAFIUS, a secure accountable file system that resides over an untrusted storage. SAFIUS provides strong security guarantees like confidentiality, integrity, prevention from rollback attacks, and accountability. SAFIUS also enables read/write sharing of data and provides the standard UNIX-like interface for applications. To achieve accountability with good performance, it uses asynchronous signatures; to reduce the space required for storing these signatures, a novel signature pruning mechanism is used. SAFIUS has been implemented on a GNU/Linux based system modifying OpenGFS. Preliminary performance studies show that SAFIUS has a tolerable overhead for providing secure storage: while it has an overhead of about 50% of OpenGFS in data intensive workloads (due to the overhead of performing encryption/decryption in software), it is comparable (or better in some cases) to OpenGFS in metadata intensive workloads.Comment: 11pt, 12 pages, 16 figure

    On the Analysis of a Label Propagation Algorithm for Community Detection

    Full text link
    This paper initiates formal analysis of a simple, distributed algorithm for community detection on networks. We analyze an algorithm that we call \textsc{Max-LPA}, both in terms of its convergence time and in terms of the "quality" of the communities detected. \textsc{Max-LPA} is an instance of a class of community detection algorithms called \textit{label propagation} algorithms. As far as we know, most analysis of label propagation algorithms thus far has been empirical in nature and in this paper we seek a theoretical understanding of label propagation algorithms. In our main result, we define a clustered version of \er random graphs with clusters V1,V2,...,VkV_1, V_2,..., V_k where the probability pp, of an edge connecting nodes within a cluster ViV_i is higher than pp', the probability of an edge connecting nodes in distinct clusters. We show that even with fairly general restrictions on pp and pp' (p=Ω(1n1/4ϵ)p = \Omega(\frac{1}{n^{1/4-\epsilon}}) for any ϵ>0\epsilon > 0, p=O(p2)p' = O(p^2), where nn is the number of nodes), \textsc{Max-LPA} detects the clusters V1,V2,...,VnV_1, V_2,..., V_n in just two rounds. Based on this and on empirical results, we conjecture that \textsc{Max-LPA} can correctly and quickly identify communities on clustered \er graphs even when the clusters are much sparser, i.e., with p=clognnp = \frac{c\log n}{n} for some c>1c > 1.Comment: 17 pages. Submitted to ICDCN 201

    Super-Fast Distributed Algorithms for Metric Facility Location

    Full text link
    This paper presents a distributed O(1)-approximation algorithm, with expected-O(loglogn)O(\log \log n) running time, in the CONGEST\mathcal{CONGEST} model for the metric facility location problem on a size-nn clique network. Though metric facility location has been considered by a number of researchers in low-diameter settings, this is the first sub-logarithmic-round algorithm for the problem that yields an O(1)-approximation in the setting of non-uniform facility opening costs. In order to obtain this result, our paper makes three main technical contributions. First, we show a new lower bound for metric facility location, extending the lower bound of B\u{a}doiu et al. (ICALP 2005) that applies only to the special case of uniform facility opening costs. Next, we demonstrate a reduction of the distributed metric facility location problem to the problem of computing an O(1)-ruling set of an appropriate spanning subgraph. Finally, we present a sub-logarithmic-round (in expectation) algorithm for computing a 2-ruling set in a spanning subgraph of a clique. Our algorithm accomplishes this by using a combination of randomized and deterministic sparsification.Comment: 15 pages, 2 figures. This is the full version of a paper that appeared in ICALP 201

    Simulation of quantum zero-point effects in water using a frequency-dependent thermostat

    Full text link
    Molecules like water have vibrational modes with a zero-point energy well above room temperature. As a consequence, classical molecular dynamics simulations of their liquids largely underestimate the energy of modes with a higher zero-point temperature, which translates into an underestimation of covalent interatomic distances due to anharmonic effects. Zero-point effects can be recovered using path integral molecular dynamics simulations, but these are computationally expensive, making their combination with ab initio molecular dynamics simulations a challenge. As an alternative to path integral methods, from a computationally simple perspective, one would envision the design of a thermostat capable of equilibrating and maintaining the different vibrational modes at their corresponding zero-point temperatures. Recently, Ceriotti et al. (Phys. Rev. Lett. 102 020601 (2009)) introduced a framework to use a custom-tailored Langevin equation with correlated noise that can be used to include quantum fluctuations in classical molecular dynamics simulations. Here we show that it is possible to use the generalized Langevin equation with suppressed noise in combination with Nose-Hoover thermostats to efficiently impose a zero-point temperature on independent modes in liquid water. Using our simple and inexpensive method, we achieve excellent agreement for all atomic pair correlation functions compared to the path integral molecular dynamics simulation.Comment: 27 pages, 12 figs, Published versio
    corecore